N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
Example:
Output: [ [".Q..", // Solution 1 "...Q", "Q...", "..Q."],
["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
Solution:
void solveNQueens(vector<vector<std::string> > &res, vector<string> &nQueens, int row, int &n) {
if (row == n) {
res.push_back(nQueens);
return;
}
for (int col = 0; col != n; ++col) {
if (isValid(nQueens, row, col, n)) {
nQueens[row][col] = 'Q';
solveNQueens(res, nQueens, row + 1, n);
nQueens[row][col] = '.';
}
}
}
bool isValid(vector<string> &board, int row, int col, int n) {
//check if the column had a queen before.
for (int i = 0; i != row; ++i)
if (board[i][col] == 'Q')
return false;
//check if the 45° diagonal had a queen before.
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j)
if (board[i][j] == 'Q')
return false;
//check if the 135° diagonal had a queen before.
for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j)
if (board[i][j] == 'Q')
return false;
return true;
}
vector<vector<string>> solveNQueens(int n) {
vector<vector<string> > res;
vector<string> nQueens(n, string(n, '.'));
solveNQueens(res, nQueens, 0, n);
return res;
}