Find Minimum in Rotated Sorted Array II
Follow up for "Find Minimum in Rotated Sorted Array": What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
Find the minimum element.
The array may contain duplicates.
Solution: Binary Search
When duplicates are allowed, we need to handle the situation where left and right is equal. In this case, we only update the right index.
int findMin(vector<int>& nums) {
int left = 0, right = nums.size()-1;
while (left < right) {
int mid = left + (right - left)/2;
if (nums[left] == nums[right]) {
right -= 1;
} else if (nums[left] < nums[right]) {
return nums[left];
} else if (nums[left] <= nums[mid]) {
left = mid+1;
} else {
right = mid;
}
}
return nums[left];
}
int findMin(vector<int>& nums) {
int left = 0, right = nums.size()-1;
while (left < right) {
int mid = left + (right - left)/2;
if (nums[mid] > nums[right]) {
// Left half is sorted
left = mid + 1;
} else if (nums[mid] < nums[right]) {
// Right half is sorted
right = mid;
} else {
// If mid is equal to right
right -= 1;
}
}
return nums[left];
}