Lowest Common Ancestor in a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
_______6______
/ \
___2__ ___8__
/ \ / \ 0 _4 7 9 / \ 3 5
Example 1:
Input: root, p = 2, q = 8 Output: 6 Explanation: The LCA of nodes 2 and 8 is 6. Example 2:
Input: root, p = 2, q = 4 Output: 2
Solution: Recursion
- If both nodes are smaller than root, then LCA lies in left subtree
- If both nodes are larger than root, then LCA lies in right subtree
- If one node is smaller and the other one is larger then root is the LCA
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root) return NULL;
if (p->val < root->val && q->val < root->val) {
return lowestCommonAncestor(root->left, p, q);
} else if (p->val > root->val && q->val > root->val) {
return lowestCommonAncestor(root->right, p, q);
}
return root;
}
Solution: Iterative
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root) return NULL;
while (root) {
if (root->val < p->val && root->val < q->val) {
root = root->right;
} else if (root->val > p->val && root->val > q->val) {
root = root->left;
} else {
break;
}
}
return root;
}