Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than the node's key. Both the left and right subtrees must also be binary search trees.
Example 1:
2
/ \
1 3
Binary tree [2,1,3], return true.
Example 2:
1
/ \
2 3
Binary tree [1,2,3], return false.
Solution: Using Recursion
A binary search tree has the following properties:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
- Each node (item in the tree) has a distinct key.
For each node we need to know its range (min, max).
bool isValidBSTUtil(TreeNode *root, TreeNode *min, TreeNode *max) {
if (!root) return true;
if (min && root->val <= min->val) return false;
if (max && root->val >= max->val) return false;
return isValidBSTUtil(root->left, min, root) && isValidBSTUtil(root->right, root, max);
}
bool isValidBST(TreeNode* root) {
return isValidBSTUtil(root, NULL, NULL);
}
Solution: Using inorder ascending property of BST
We can store the address of the previous node
bool isValidBSTUtil(TreeNode *root, TreeNode **prev) {
if (!root) return true;
if (!isValidBSTUtil(root->left, prev)) return false;
if (*prev && root->val <= (*prev)->val) return false;
*prev = root;
return isValidBSTUtil(root->right, prev);
}
bool isValidBST(TreeNode* root) {
TreeNode *prev = NULL;
return isValidBSTUtil(root, &prev);
}