Fibonacci Numbers
Solution: Recursive
Timecomplexity: O(2^n)
int fibonacci(int i) {
if (i == 0) return 0;
if (i == 1) return 1;
return fibonacci(i - 1) + fibonacci(i - 2);
}
Solution: Top-Down Dynamic Programming (or Memoization)
int fibonacci(int n) {
return fibonacci(n, new int[n + 1]);
}
int fibonacci(int i, int[] memo) {
if(i== 0 || i== 1) return i;
if (memo[i] == 0) {
memo[i] = fibonacci(i - 1, memo)+ fibonacci(i - 2, memo);
}
return memo[i];
}
Solution: Bottom-Up Dynamic Programming
int fibonacci(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
int[] memo = new int[n];
memo[0] = 0;
memo[1] = 1;
for(int i=2; i<n; i++){
memo[i] = memo[i - 1] + memo[i - 2];
}
return memo[n - 1] + memo[n - 2];
}
Solution: Bottom-Up Dynamic Programming Optimized
int fibonacci(int n) {
int a = 0;
int b= 1;
for (int i = 2; i < n; i++) {
int c = a + b;
a = b;
b = c;
}
return a + b;
}